
Internet of Things Report - Air Pollution-Based Traffic
Management System

May 10, 2016

Main Report
1 Scenario Outline
At the Paris climate COP21 conference in December 2015, 195 countries adopted a universal climate deal which
sets out to limit global warming to well below 2°C until 2100. The agreement is due to enter into force in 2020
and will force authorities around the globe to rethink their national climate policies.

Air pollution has long been directly linked to traffic and congestion levels in cities. It is no surprise today
that cities with high congestion levels exhibit high levels of particulate matter (PM) and are a health hazard to
residents. The World Health Organization measured London’s PM10 to be 23 ug/m3, which is comparable to
Paris and New York (24 and 23 respectively) [1]. However, TomTom rates London as the 16th most congested
city in the world [2].

Automatically optimising traffic and air quality are conflicting objectives but can be tackled with the power
of computing. Traffair aims to mitigate traffic congestion while meeting air quality standards, which are policies
driven by the COP21 agreement, by providing real-time traffic management system based on air pollution
readings at various locations in London.

The project is based on an existing research project called iTRAQ [3] which gathers air quality information
from high rises and from space to provide a traffic management system. We aimed to recreate this project by
using sensor readings from the ground instead.

2 Design Methodology and Implementation

2.1 Architectural Overview
The Traffair Traffic Management System predicts the level of traffic in various locations in London based on the
level of NO2 at these locations and provides a recalculated route based on the predictions. In order to achieve
this, the Traffair system consists of a Computational Intelligence module (CI) which is a statistical model that
has been fed with real-time traffic and gas readings over a period of 2 weeks (See Appendix A [5.4]). The system
also features a Traffic Prediction module (TP) which uses the CI model to compare real time data coming from
the sensors to the statistical model and offer a traffic level prediction for each of the locations. Finally, the
system features a Routing Algorithm (RA) which uses the predicted traffic level coming from the TP module to
output a redirection route. All this information is displayed in a user friendly dashboard (See Appendix B [5.4])
and a real-time database/API to extend the system’s usage (See https://traffair.firebaseio.com/data.json).

2.2 Design
2.2.1 Gathering Research Information

Before building Traffair, we set out on a long period of time of research to discover ideas that fit the IoT & Big
data concepts. This meant that we had to find a project that fit the following criteria:

• Heavily depends on sensor use.

1

https://traffair.firebaseio.com/data.json

• Can be deployed and tested or simulated easily.

• Gathering a lot of data will provide added value to the service.

• Data gathered provides rich and valuable information.

• The data gathered can be fed back to the module/sensor to improve their readings/processing (adap-
tive readings) or enhance the system (for example, an adaptive recommendation search engine based on
previous search history).

• Does not only “alert” or provide “smart” features.

Keywords guidance for the brainstorming sessions included: management, efficiency, control, occupancy, meter-
ing, and patterns recognition.

We finally stumbled upon an existing research project from De Montfort University, Leicester called iTRAQ
which is an integrated traffic management and air quality control system that used space services [4]. Though
the research already had extensive resources and progress, we decided to deploy a similar concept based on
ground rather than space readings.

2.2.2 Preparation

While preparing for this project we developed the following action points:

1. Finding data to build the statistical/Machine Learning model: This consisted of figuring out
which database or APIs already existed that could provide us with gas and traffic readings around London.
We investigated the London Data Store [5] which only provided offline non-realtime data, the iTRAQ
project who was not too keen on sharing data, the London Air API and the various Traffic APIs from
HERE Maps, Google Maps, Waze, and Miscrosoft.

2. Investigating which sensors and edge computers are most appropriate: We quickly settled on
the Raspberry Pi 3 as the edge computer because it provided an integrated Wifi chip, making it perfect for
IoT applications. The Raspberry Pi also comes with a dedicated connector for a camera which we could
use for traffic monitoring based on image recognition (more on its lack of use in the Engineering Tradeoff
section [3.4]). Additionally, the hardware’s development language was based in Python which matched
the groups’ skills better than its C-language counterpart featured in Arduino devices. We originally set
out to use temperature, humidity, Carbon Monoxide, and Nitrogen Dioxide sensors and finally integrated
only the Carbon Monoxide sensor (More on this in the Engineering Tradeoff section 3.3).

3. Investigating which Cloud Platform is most appropriate: Google Cloud had recently launched
which featured many of Google’s renowned prediction services. However, with the support provided
internally for IBM Bluemix and the appeal of Watson services, we decided to use IBM Bluemix as the
Cloud platform that would power Traffair.

4. Investigating which Data Analytics Platform is best: This decision came further along in the
process when we realized that IBM offered Watson Predictive Analysis API for realtime usage. For offline
analytics, we used a mix of Matlab and Excel which matched the skill level of our group.

5. Establishing Timeline for Development & Meetings: Once the research and preparation period
was successfully concluded, we developed a timeline for meetings and deliverables (See Appendix C for
Gantt Chart [5.4])

2.3 Implementation
2.3.1 Building the Computational Intelligence Module

The CI module was built by gathering NO2 readings at 3 nearby South Kensington locations (See Appendix B
[5.4]) from the London Air API [7]and matching them with their current traffic flow readings from the HERE
Traffic API [6] into a database. From this database, we created a classifier with location as a nominal input
class along with time of the day and NO2 level as continuous inputs which left the traffic level (or Jam Factor)
as the targeted output of the statistical model.

2

2.3.2 Building the Traffic Prediction System & Routing Algorithm

This model was then fed into the IBM Bluemix Cloud platform as the TP module, powered by IBM’s Watson
Predictive analysis & SPSS Modeler. The TP module outputs the predicted traffic level for a given NO2 and
timestamp (time of the day) reading. We then built a rudimentary Routing Algorithm module within the
NodeRED platform which redirects traffic from highly congested areas to lowly congested areas.

2.3.3 Integrating Sensors & Edge Computer

Having the TP system in place, we got rid of the London Air API KC5 location, which was used as one of
the NO2 inputs, and replaced it with our own sensor which simulated the South Kensington KC5 location.
The hardware is built using the Raspberry Pi 3 as the edge computer along with Arduino for ADC capabilities
and actually uses Figaro TGS 2442 Carbon Monoxide Gas Sensor (more about this decision in the Engineering
Tradeoff Section [3.3]).

2.3.4 Monitoring Dashboard System & Real-time Database

When the Cloud implementation was finished, the data gathered in real time included the gas readings, the
predicted traffic level (or Jam Factor) along with the confidence index, the date and timestamp of the readings,
the suggested redirect route along with the coordinates of the redirect to/from location. We uploaded this data
to a real-time database (See https://traffair.firebaseio.com/data.json). that can be used as an API to extend
the use of the Traffair System (eg. Twitter integration). Additionally we developed a monitoring dashboard
which displays these values in real-time (See Appendix A [5.4]).

2.3.5 Offline Analytics

The data pushed to the dashboard and API was also downloaded for offline data analytics. The original classifier
based on the London Air API & HERE Traffic API readings was also downloaded for offline data analytics. We
developed comparative models in Excel and regression analysis in Matlab.

3 Engineering Trade-Offs
Traffair is a proof of concept and most probably lacks the accuracy that the iTRAQ project is able to provide.
Due to the limited number in development team members and the time constraint, the project had to undergo a
few engineering tradeoffs. The inaccuracies of the project were the results of the following engineering tradeoffs.

3.1 Using APIs instead of In-House Sensors
In order to fit the project within the time constraint, we decided to use external data to build our classifier
and statistical model instead of deploying our own sensors in the wild for two weeks. This way, we were able
to save at least 2 weeks in development time. This decision was also backed by the fact that we wouldn’t be
able to leave 3 sensor-equipped micro-computers in the wild for 2 full weeks. Unfortunately, the London Air
API did not provide a constant stream of data while the Cloud system was polling both APIs every 15 minutes
regardless. This created mismatch in data between the gas readings and their respective traffic readings. For
example, traffic level measured at 8 AM on Sunday would see the same NO2 level as if it were taken on Monday
3PM. This created high error rates in the statistical model.

3.2 Choosing a “Universal” Timestamp
Because of the London Air API inaccuracies, our data ended up with 3 different timestamps. The first one
being the time at which the gas readings were last recorded (from the London Air API). The second being the
time at which the traffic was last recorded at that location (from the HERE Traffic API). The last, and having
inherently the same value as the HERE API timestamp, being the time at which this data was polled (provided
by the IBM Bluemix platform). We chose to use the IBM Bluemix timestamp as the universal timestamp across
the application to provide a sense of real-time even though it incurred discrepancies in the statistical model.
Had we used the London Air API timestamp instead, we would have had much less data points (since the data

3

https://traffair.firebaseio.com/data.json

didn’t update rapidly enough) over these two weeks and hence unable to move forward with the project. In
hindsight, we could have selected that option instead and increase the period of data gathering to a full month
instead.

3.3 Selecting Sensors
The iTRAQ project uses various meteorological data for their forecasting algorithm such as temperature, air
pressure, or wind speed (See Appendix D [5.4]). We initially set out to measure temperature, humidity, carbon
monoxide, and nitrogen dioxide. However, due to added complexity of integrating yet another API (Weather)
and the build up of inaccuracies in the statistical model, we took the decision to only measure nitrogen dioxide.
At that point, we had already ordered the sensors and carbon monoxide was the only one available. Since
we had already undergone the development of the system based on nitrogen dioxide at the South Kensington
locations, we decided to keep the CO sensor and translate it to NO2 readings. We used readings from Columbia
University [8] about the composition of air and developed a ratio between traces of CO and NO2 to convert our
readings to NO2 readings. Obviously, this would not be implemented in a commercialized solution.

3.4 Image Processing for Traffic Prediction
When initially investigating the scope of the project, we set out to build our own classifier based on readings
from our own sensors (see Using APIs instead of In-House Sensors [3.1]). This also meant that we would have
to estimate traffic level at the sensor and is the reason why we initially ordered Raspberry Pi Cameras. While
developing the vehicle detector using OpenCV, we realized that the accuracy of the model was very low and
instead we used the HERE Traffic API to estimate the level of traffic at the sensor location. This solution still
provided some discrepancy but was probably lower than that of the vehicle detection classifier.

3.5 Number of Traffic Nodes & Routing Algorithm
We decided to only use 3 locations instead of a larger network. This was mainly due to the fact that implementing
this solution for a very large network would have been quite challenging given the time constraint. 3 nodes gave
the opportunity to show the potential of Traffair while keeping the development of a routing algorithm feasible.
The algorithm itself is mainly hard coded, meaning that jam factor scores are grouped together in many small
groups of cases (routing if-statements). Moving forward, a more comprehensive and dynamic algorithm would
have to be developed.

4 Commercial / Market Considerations

4.1 Target Market
With the recent COP21 agreement legally binding 195 countries to limit global warming to 2°C until 2100,
governmental authorities in highly congested cities will be looking of solutions that reduce their carbon footprint.
Additionally, these local authorities will be interested to match the sustained concern to provide high air quality
levels for their residents. Cities ranking highest in congestion and pollution level include Rio de Janeiro, Tianjin,
Beijing, or Hangzhou - all scoring above 40% congestion level [2] and 40 ug/m3 of PM10 [1].

4.2 Product/Service Offering
The true power of Traffair is through its real-time API capabilities rather than its stand-alone monitoring
dashboard. Like many other API providers, the Traffair pricing strategy will be based on a monthly subscriptions
with pricing tiers depending on number of locations polled, API calls per month (polling frequency), and
unlocking other premium features and endpoints including “redirection routes” or possibly “traffic light control”.

4.3 Benefits to Traffair & Competitive Advantage
Traffair brings the cost of developing and deploying traffic management solutions down as sensors become less
complex and data streamed is much smaller than video streaming (in comparison to traffic cameras). Deploying
Traffair in cities can result in the improvement of the air quality of affected regions and hence drop mortality

4

rates tied to air pollution. Because of its modular nature, Traffair can be integrated with any equipment that
can output JSON data, meaning customers can integrate Traffair with their own equipment and bring the
deployment cost further down. Traffair is opened to integration through its public API that allows developers
to build customized applications.

4.4 Costs & Market launch
In order to launch Traffair, sensors will have to be initially deployed throughout the targeted cities which will
consist of the main cost of operations. This can be covered by setting up governmental auction bids to deploy
this equipment similar to telecommunication companies’ bids for laying out optical fibre. The Traffair service
will have to be able to monitor, deploy, and repair these sensors while providing test results on the quality of
forecast, optimization, and overall gain for governmental authorities.

4.5 Differences in Implementation and Design for Commercial Use
As it is today, Traffair is a rudimentary version of the overall potential solution. Before commercialization,
Traffair will have to undergo an overhaul of its routing algorithm and use more data points (such as weather
and atmospheric data) in its prediction algorithm. Additionally, energy management and harvesting will have
to be investigated. The most viable option at the moment seems to be a seamless integration with traffic lights
in terms of control and power supply.

4.6 New Verticals
In the future, Traffair’s data driven approach could be exploited to explore new verticals such as telematics for
freight traffic management and tracking or other smart cities applications.

5 Experimental Results

5.1 Traffic Flow Prediction Results
The figures in Appendix E [5.4] show screenshots of a 24 hour time period of the predicted traffic level compared
to the measured level at each of the South Kensington locations. Though this data was gathered mostly on a
Sunday, which usually exhibits a strange behavior in terms of traffic compared to the other days of the week,
there is a clear trend across all three locations. Because of the accumulated discrepancies in this research
project, the graphs do not exhibit exceptionally high accuracy, especially during rush hour periods. Location
KC3 shows much more discrepancy which is probably due to the fact that the statistical model in IBM SPSS
did not have as many diverse data points for KC3 as the other locations because of a slower update (See Using
APIs instead of In-House Sensors [3.1].

5.2 Confidence level & Predictor Importance
Because of the various engineering tradeoffs discussed above, the confidence level for the predicted traffic level
(Jam) is recurrently low, especially when NO2 levels are not skyrocketing and the time does not indicate "rush
hour”. While analysing the data, it has come to our attention that the confidence level was often much higher
around 9AM and 6PM which corresponds to London’s rush hour times. SPSS’s model analysis actually displayed
that time was viewed as a more important predictor than NO2 levels (see Appendix F [5.4]). This is probably
due to the fact that timestamp data is much more constant and variable than the NO2 data gathered from the
London API (See Using APIs instead of In-House Sensors in Engineering Tradeoffs 3.1).

5.3 Offline Matlab Analysis
In this research’s offline analysis, we applied an Artificial Neural Network Model based on our training set to
classify jam factor according to the known inputs: location, air quality and time. Appendix G [5.4] illustrates
the error rate of classification of the first 150 iterations. After each iteration, the neural network updates weight
of each parameter, in order to explore the lowest error rate. It is normal that the error rate is fluctuant during

5

the training process, though in this case we can clearly see the model has difficulty in establishing a constant
error rate (See Using APIs instead of In-House Sensors in Engineering Tradeoffs 3.1).

5.4 Regression
We’ve developed a regression analysis to estimate the relationship between the variables we observed. At first,
we set the output (jam factor) as dependent variable, and the other three inputs (NO2, timestamp, location)
as independent variables and analysed them into Matlab. Appendix H [5.4] shows a regression analysis over
50 data points collected. The difference between the actual and the predicted Jam Factor is mapped as the
residual value while the lines describe the confidence interval of these data points. The results show that the
residual values mostly fall around 0 and 2 degrees of variation compared to the actual Jam Factor data. Though
a predicted Jam Factor of 3 can still somewhat represent a measured Jam Factor of 5, it is still fairly inaccurate.
The confidence intervals show that the confidence of the residual values is actually fairly low and contains a
wide range of possible values.

Appendix A - Traffair Architectural Model

6

Appendix B - Traffair Monitoring Dashboard

Appendix C - Project Gantt Chart

7

Appendix D - iTRAQ Computational Intelligence Factors

Source iTraq [4]

Appendix E - Comparative Results of Predicted and Measured Traffic
Levels

8

9

Appendix F - Predictor Importance

10

Appendix G - Accuracy of Jam Factor Classification

11

Appendix H - Residuals and Confidence Interval

References
[1] World Health Organization. Ambient Air Pollution PM Database. May 2014. Raw data. N.p.

http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/

[2] TomTom. "TOMTOM TRAFFIC INDEX MEASURING CONGESTION WORLDWIDE." Tomtom.com.
N.p., n.d. Web. 8 May 2016. <https://www.tomtom.com/en_gb/trafficindex/list>.

[3] Elizondo, David. "ITRAQ." ITRAQ. N.p., n.d. Web. 08 May 2016.
<http://www.dmu.ac.uk/research/research-faculties-and-institutes/technology/digits/partnerships-
funding-and-projects/itraq.aspx>.

[4] Passow, Ben. "ITRAQ - Integrated Traffic Management and Air." (n.d.): n. pag. De Montfort University.
Web. 8 May 2016. <http://ima.ac.uk/slides/BenPassow251113.pdf>.

[5] Greater London Authority. London Data Store. N.p., n.d. Web. 8 May 2016. <http://data.london.gov.uk/>.

[6] HERE Maps. "Flow." Traffic API. N.p., n.d. Web. 08 May 2016. <https://developer.here.com/rest-
apis/documentation/traffic/topics_v6.1/resource-parameters-flow.html>.

[7] "London Air Quality Network || API." London Air Quality Network || API. King’s College London, n.d.
Web. 08 May 2016. <http://www.londonair.org.uk/LondonAir/API/>.

[8] "Gaseous Composition of Dry Air." Columbia University, 1995. Web. 8 May 2016.
<http://eesc.columbia.edu/courses/ees/slides/climate/table_1.html>.

12

	Scenario Outline
	Design Methodology and Implementation
	Architectural Overview
	Design
	Gathering Research Information
	Preparation

	Implementation
	Building the Computational Intelligence Module
	Building the Traffic Prediction System & Routing Algorithm
	Integrating Sensors & Edge Computer
	Monitoring Dashboard System & Real-time Database
	Offline Analytics

	Engineering Trade-Offs
	Using APIs instead of In-House Sensors
	Choosing a “Universal” Timestamp
	Selecting Sensors
	Image Processing for Traffic Prediction
	Number of Traffic Nodes & Routing Algorithm

	Commercial / Market Considerations
	Target Market
	Product/Service Offering
	Benefits to Traffair & Competitive Advantage
	Costs & Market launch
	Differences in Implementation and Design for Commercial Use
	New Verticals

	Experimental Results
	Traffic Flow Prediction Results
	Confidence level & Predictor Importance
	Offline Matlab Analysis
	Regression

